数据挖掘
    Data Mining

  • 讲   师:

    • 尼廷·帕特尔
  • 译   者:

    宋昭慧

  • 学   校:

    麻省理工学院

  • 来   源:

    OOPS开放式课程计划

  • 语   言:

    中英

  • 免费

  • 试    读 领    取
  • 导学
  • 数据挖掘技术目前正迅速发展。通过本堂课程,你能了解流行的数据挖掘技术的优势和局限,并能够确定数据挖掘的商业应用前景。学生能积极地参加和管理由专家和顾问主导的数据挖掘项目。从本课程中获得额外有用的技能便是学会使用Excel中强大的数据分析功能。

    Data mining is gaining momentum these days. Through this course, you are able to develop an understanding of the strengths and limitations of popular data mining techniques and to be able to identify promising business applications of data mining. Students will be able to actively manage and participate in data mining projects executed by consultants or specialists in data mining. A useful takeaway from the course will be the ability to perform powerful data analysis in Excel.

  • 课程简介
  • 本课讨论了数据挖掘这一快速增长的领域,介绍了其原理以及互联网、电子商务、电子银行、POS机、条码阅读器等日常科技中的应用。读者在本课中会纵览其应用并通过简单易用的软件和案例,还有亲自动手使用数据挖掘算法的机会。

    Data that has relevance for managerial decisions is accumulating at an incredible rate due to a host of technological advances. Electronic data capture has become inexpensive and ubiquitous as a by-product of innovations such as the internet, e-commerce, electronic banking, point-of-sale devices, bar-code readers, and intelligent machines. Such data is often stored in data warehouses and data marts specifically intended for management decision support. Data mining is a rapidly growing field that is concerned with developing techniques to assist managers to make intelligent use of these repositories. A number of successful applications have been reported in areas such as credit rating, fraud detection, database marketing, customer relationship management, and stock market investments. This course will examine methods that have emerged from both fields and proven to be of value in recognizing patterns and making predictions from an applications perspective. We will survey applications and provide an opportunity for hands-on experimentation with algorithms for data mining using easy-to-use software and cases.

  • 讲师简介
  • 尼廷•帕特尔是大家公认的开发快速精准电脑运算以实施计算型密集的研究方法的一位专家。他已经发表了超过65篇关于数据、运筹学以及计算机信息处理技术方面的期刊论文,也为终端客户合著了数据发掘方面的书籍。帕特尔是美国数据协会的成员。1987年,他同塞勒斯•梅塔博士、卡里姆•希尔吉博士一起获得由美国数据协会颁发的乔治•W•斯内德克大奖。自1995年起,他担任麻省理工学院的客座教授。在此之前他还担任过印度管理学院的CMC讲座教授,并先后在哈佛大学、密歇根大学、蒙特利尔大学、彼兹堡大学都任过客座教授。他是印度顶尖的软件公司——塔塔咨询服务公司的创始人之一,同时是印度电脑协会的成员。

    Nitin Patel is a recognized expert on the development of fast and accurate computer algorithms to implement computationally intensive statistical methods. He has published over sixty-five refereed papers in the areas of statistics, operations research and computing and co-authored a book on data mining for end-users. Dr. Patel is a Fellow of the American Statistical Association. Along with Dr. Cyrus Mehta and Dr. Karim Hirji, he received the 1987 George W.Snedecor Award from the American Statistical Association. Dr. Patel has been a visiting professor at MIT since 1995. Previously, he was CMC chair professor at the Indian Institute of Management, and held visiting positions at Harvard, the University of Michigan, the University of Montreal and the University of Pittsburgh. He was a co-founder of Tata Consultancy Services, a leading Indian software company and is a Fellow of the Computer Society of India.

  • 目录
    • 第一课 数据挖掘概述
    • 第二课 k-最近邻算法在分类和预测中的应用
    • 第三课 分类器性能评价
    • 第四课 分类树
    • 第五课 判别分析
    • 第六课 Logistic的回归
    • 第七课 手摇纺织机Saris的销售
    • 第八课 神经网络
    • 第九课 多元线性回归概述
    • 第十课 数据挖掘中的多元线性回归
    • 第十一课 数据挖掘技术比较
    • 第十二课 聚类分析
    • 第十三课 降维:主成分分析
    • 第十四讲 在交易数据库中发现关联规则
    • Lecture 1 Data Mining Overview
    • Lecture 2 k-Nearest Neighbor Algorithms for Classification and Prediction
    • Lecture 3 Judging the Performance of Classifiers
    • Lecture 4 Classification Trees
    • Lecture 5 Discriminant Analysis
    • Lecture 6 Logistic Regression
    • Lecture 7 Sales of Handloom Saris
    • Lecture 8 Neural Nets
    • Lecture 9 Multiple Linear Regression Review
    • Lecyure 10 Multiple Linear Regression in Data Mining
    • Lecture 11 Comparison of Data Mining Techniques
    • Lecture 12 Cluster Analysis
    • Lecture 13 Dimensionality Reduction: Principal Components Analysis
    • Lecture 14 Discovering Association Rules in Transaction Databases
    展开